Characterization of Microwave Liquefied Bamboo Residue and Its Potential Use in the Generation of Nanofibrillated Cellulosic Fiber
نویسندگان
چکیده
Bamboo raw feedstocks with large particle size (20−80 mesh) were subjected to a microwave liquefaction system, and the liquefied products were separated into biopolyols and liquefied residues. Biopolyols were first analyzed by gas chromatography mass spectrometry (GC−MS), and the main components were sugar derivatives with 2−4 hydroxyl groups and phenolic compounds derived from lignin. The residues were collected and evaluated for potential use in the production of nanofibrillated cellulosic fibers. Results show that liquefied residue content as well as its physicochemical properties varied with respect to particle size, liquefaction temperature, and reaction time. It was also found that residues from liquefaction reaction with the minimum residue content in this study still exhibited traced fiber structure with remaining cellulose attached with recondensed lignin. Pure white cellulose fibers were extracted from the residues with yield of 65.61% using a combination of bleaching and acid hydrolysis treatment. Nanofibrillated cellulosic fibers were generated by given the purified cellulose fibers to high-intensity ultrasonic treatment. The resulted nanofibrillated cellulosic fibers had a range of 4−18 nm in diameter and length of 550 nm or longer, indicating the nanofibers obtained from liquefied bamboo residues hold great potential in reinforcing polymeric matrix materials. The successful isolation of nanofibrillated cellulosic fibers from liquefied residues offers a novel approach to make full use of the liquefied bamboo for value-added green products.
منابع مشابه
Effect of Anatomical Characteristics and Chemical Components on Microwave-assisted Liquefaction of Bamboo Wastes
The epidermis layer waste (ELW) and the inner layer waste (ILW) were removed from Phyllostachys pubescens bamboo, and the anatomical characteristics and chemical components of these wastes were comparatively investigated. Both the ELW and ILW were subjected to a microwave-assisted liquefaction process to evaluate the relationship between bamboo properties and liquefaction behavior. The results ...
متن کاملExtraction and characterization of holocellulose fibers by microwaveassisted selective liquefaction of bamboo
Microwave-assisted selective liquefaction was proposed and used as a novel method for the isolation of holocellulose fibers. The results showed that the bamboo lignin component and extractives were almost completely removed by using a liquefaction process at 120 8C for 9 min, and the residual lignin and extractives in the solid residue were as low as 0.65% and 0.49%, respectively. Increasing th...
متن کاملCharacterization of nano-biocomposite films reinforced with nanofibrillated cellulose and montmorillonite as a potential application for Food packaging industry
In this study, polyvinyl alcohol- Nanofibrillated cellulose –Montmorillonite (PVA-NFC-MMT)and Ethylene-vinyl acetate- Nanofibrillated cellulose –Montmorillonite (EVA-NFC-MMT) nanocompositescontaining 2% weight of NFC and MMT were prepared by melt blending method. Then, the effect ofNFC and MMT as reinforcing materials on biodegradability, morphology, and mechanical, thermal an...
متن کاملEffect of Cellulose Characterization Used in Manufacturing of E8010-P1 Cellulosic Electrode on Structural and Mechanical Properties of its Weld Metal
Cellulose is a natural biopolymer with the general (C6H10O5)n formula, which according to AWS A5.5 standard, more than 40wt% of coating of cellulosic electrodes is consisted of cellulose. In this study to evaluate the effect of cellulose type on the performance of E8010-P1 cellulosic electrode, equal amounts of two celluloses with the same commercial properties but produced by two different c...
متن کاملSynthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کامل